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A MODEL FOR CHEMICALLY REACTING NITROGEN-OXYGEN MIXTUFZS 

WITH APPLICATION TO NONEQUILIBRIUM A I R  FLOW 

By Walter A.  Reinhardt and Barret t  S. Baldwin, Jr. 
Ames Research Center 

SUMMARY 

A n  a i r  model i s  presented t h a t  i s  r e l a t i v e l y  simple yet  quant i ta t ive ly  
r e a l i s t i c  f o r  use i n  computing chemical nonequilibrium i n  a flow f i e l d .  Such 
a model i s  applicable t o  those computational problems associated w i t h  high- 
speed reent ry  where t h e  e f f e c t  of t h e  nonequilibrium processes on t h e  primary 
flow variables  would be important, but where t h e  d e t a i l s  of these processes 
would be of secondary i n t e r e s t .  The const i tuents  t h a t  comprise t h e  system a r e  
N2, 02, N, 0, N+, O', and e-. The dissociation-recombination react ions of N2, 
02, and NO as wel l  as t h e  bimolecular exchange react ions a r e  considered. How- 
ever, t h e  presence of NO i s  accounted f o r  i n  an approximate manner t o  avoid 
coupling i n  t h e  atom conservation equations. The model allows f o r  the  inclu-  
s ion of e i t h e r  nonequilibrium or equilibrium vibrat ion while ionizat ion i s  
taken t o  be i n  equilibrium. The r e s u l t i n g  r a t e  equations a r e  i n  a form t h a t  
may be integrated over l o c a l  values of the flow variables  t o  obtain a system 
of transcendental  equations t h a t  can be solved by i t e r a t i o n .  Comparisons with 
experimental nozzle flow r e s u l t s  and with other numerical calculat ions a r e  
presented. 

INTRODUCTION 

Developments i n  nonequilibrium flow theory over t h e  past  10 years indi-  
cate  a need f o r  two types of gas models. A i r  models based on simplifying 
approximations have been an important source of q u a l i t a t i v e  information, 
whereas attempts t o  describe s p e c i f i c  experimental r e s u l t s  have l e d  t o  great  
complexity i n  t h e  models considered. This report  presents a s implif ied model 
f o r  nitrogen-oxygen mixtures t h a t  contains only two nonequilibrium variables  
f o r  t h e  chemical e f f e c t s  and yet  i s  quant i ta t ive ly  r e a l i s t i c  over a wide range 
of flow conditions . 

Early treatments of chemical nonequilibrium i n  t h e  flow of pure diatomic 
gases u t i l i z e d  t h e  Lighthill-Freeman m o d e l ( r e f s . l t o 3 ) .  This method i s  based 
on the  assumption t h a t  i n  t h e  presence of chemical react ion any concurrent 
e f f e c t  of v ibra t iona l  nonequilibrium w i l l  be minor; a "half excited" value of 
v ibra t iona l  exc i ta t ion  i s  used. Variations on t h e  method allow f o r  a more 
accurate evaluation of t h e  e lec t ronic  and v ibra t iona l  exc i ta t ion  i n  the  equi- 
l ibrium constant and enthalpy ( r e f s .  4 t o  6 ) .  For nitrogen-oxygen mixtures, 
it w a s  determined on t h e  bas i s  of ava i lab le  r a t e  constants t h a t  react ions 
involving n i t r i c  oxide would play an important r o l e  i n  shock tube flows 
( r e f .  7 ) .  A similar react ion model including v i b r a t i o n a l  nonequilibrium w a s  



incorporated i n  a machine program f o r  channel flow ( r e f s .  8 and 9 ) .  We s h a l l  
have occasion t o  use the  r e s u l t s  of Emanuel and Vincenti ( r e f .  9) f o r  purposes 
of comparison i n  t h e  present paper. An excel lent  summary of avai lable  infor-  
mation on v i b r a t i o n a l  and chemical reac t ion  rates believed t o  be of importance 
i n  a i r  flows a t  temperatures up t o  8000° K w a s  given by Wray ( r e f .  10). 
pert inent  s e t  of calculat ions on channel flows and ex terna l  flows by 
Eschenroeder e t  a l . ,  emphasize t h e  r o l e  of t h e  bimolecular exchange react ions 
involving n i t r i c  oxide ( r e f .  11). 
t h e  same as t h a t  of t h e  previous papers except t h e  v i b r a t i o n a l  exc i ta t ion  w a s  
taken t o  be i n  equilibrium (we s h a l l  a l s o  use a representat ive sample of these  
calculat ions as a comparison f o r  our model r e s u l t s ) .  The implications of t h e  
ex is t ing  knowledge on nonequilibrium e f f e c t s  i n  afterbody flows have been d i s -  
cussed ( ref .  12) and p o s s i b i l i t i e s  f o r  simplifying t h e  react ion model i n  
c e r t a i n  regimes i n  s tud ies  of complicated geometric configurations were 
considered ( r e f .  11) . 

A 

The reac t ion  model used w a s  e s s e n t i a l l y  

In  the  foregoing works a mechanism f o r  coupling between v ibra t iona l  and 
chemical nonequilibrium postulated by Hammerling, Teare, and Kivel ( r e f .  13) 
w a s  suppressed i n  t h e  be l ie f  t h a t  it would be unimportant except a t  higher 
temperatures. The avai lable  analyses of shock tube data  supported t h i s  view. 
Subsequently t h e  theory of such coupling w a s  improved by Heims ( r e f .  14 )  and 
Treanor and Marrone ( r e f s .  13 and 16) and used t o  explain the  r e s u l t s  of shock 
tube experiments i n  an argon-oxygen mixture a t  temperatures up t o  16,500~ K. 
Additional coupling mechanisms of possible importance suggested by Bauer and 
Tsang ( r e f s .  17 and 18) include a rotat ion-vibrat ion coupling e f f e c t  and a 
k i n e t i c  e f f e c t ,  due t o  t h e  bimolecular exchange reactions,  t h a t  would tend t o  
push the  v ibra t iona l  exc i ta t ion  more rap id ly  toward equilibrium. Two reports  
( r e f s .  19 and 20) have been published t h a t  contain a discussion of much of 
t h e  recent work i n  t h e  nonequilibrium f i e l d  as well  as d e t a i l s  on a general  
machine program t h a t  w a s  used i n  many of t h e  foregoing s tudies .  

Recently evidence has been uncovered t o  support the  view t h a t  (a t  l e a s t  
i n  expanding flows) t h e  r a t e s  of v i b r a t i o n a l  re laxa t ion  a re  much grea te r  than 
t h e  values obtained from previous analyses of shock tube data  ( r e f s .  2 1 t o  23). 
I n  a i r  mixtures there  i s  evidence t h a t  the  bimolecular exchange react ions may 
a l s o  promote v i b r a t i o n a l  re laxat ion ( r e f s .  17, 18, and 22) . Consequently, t h e  
accuracy of nonequilibrium theory, as it appl ies  t o  v ibra t iona l  relaxation, i s  
s t i l l  subject t o  doubt pending f u r t h e r  experimental and t h e o r e t i c a l  investiga- 
t i o n .  Unt i l  t h e  remaining uncertaint ies  a r e  resolved, it i s  considered worth- 
while t o  allow f o r  t h e  p o s s i b i l i t y  of uncoupled v ibra t iona l  nonequilibrium. 
I n  t h e  following analysis  it i s  a simple matter t o  include t h i s  option and 
t h i s  has been done. 

NOMENCLATURF:~ 

a r a t i o  of t o t a l  mass of oxygen t o  the  t o t a l  mass of nitrogen i n  a 
sample of the  gas mixture (0.3064 f o r  a i r )  

- c - .  - 
b r a t i o  of gram molecular weights, %/MN (1.142) 

_ _  _ _  .. 

k g s .  u n i t s  a r e  used. 

2 



ee2 

N 

eeZ,i 

e v i  

f N y  f 0  

g i ,  j 

h 

fi 

K i  

k 

kf, i 

M i  

m i  

P 

pr  

Qe2 ,i 

R 

T r  

wN,wO 

yNYyO 

Z 

i n t e r n a l  energy contr ibut ion due t o  e lec t ronic  exci ta t ion,  equa- 

e lec t ronic  i n t e r n a l  energy contribution due t o  species i, equa- 

t i o n  ( 3 )  

t i o n  (6)  

equation (18) 
v ibra t iona l  contr ibut ion t o  i n t e r n a l  energy due t o  species i, 

variables,  defined by equations (27) and (28),  t h a t  a r e  i n  the  
r a t e  equations f o r  production of nitrogen and oxygen 

degeneracy of the  j t h  term l e v e l  for species i 

s p e c i f i c  enthalpy, equation (3)  

Planck’s constant divided by 2~ 

equilibrium constant f o r  i t h  reac t ion  

Bolt z mann ’ s c ons t ant 

forward r a t e  constant of t h e  i t h  chemical react ion 

gram molecular weight of species i 

atomic weight of species i 

pressure 

reservoi r  pressure 

e lec t ronic  p a r t i t i o n  funct ion f o r  species i, C g i j  exp (2) 
gas constant, equation (7)  j 

universal  gas constant 

t emperat w e  

reservoir  temperature 

degrees of d i ssoc ia t ion  f o r  nitrogen and oxygen, respect ively 

degrees of ionizat ion for nitrogen and oxygen, respect ively 

compressibility, equation (2 )  

variables,  defined by equations (12) t o  (15), and contained i n  the 
equations f o r  equilibrium amounts of W N e ~  YNe’ and YOe, 
respect i v e l y  



s p e c i f i c  mole concentration, moles of i per u n i t  mass of gas Y i  

s t  ef f ic iency  f a c t o r  of t h e  2th species f o r  promoting t h e  i t h  
r e a c t  ion 

E i  measure of t h e  departure of species i from loca l  equilibrium, 
Wie - W i  

€i j e lec t ronic  energy corresponding t o  t h e  j t h  s p e c t r a l  term f o r  
species i 

c h a r a c t e r i s t i c  temperatures f o r  rotat ion,  vibrat ion,  dissociat ion,  
and ionization, respect ively 

P densi ty  

PO standard densi ty  

T c h a r a c t e r i s t i c  re laxat ion time 

'vi c h a r a c t e r i s t i c  re laxat ion time f o r  v ibra t ion  associated w i t h  
molecular species i, see 

DESCRIPTION OF THE MODEL 

I n  a well-known t r e a t i s e  on t h e  thermodynamic and t ransport  propert ies  of 
high-temperature a i r ,  C. F. Hansen ( r e f .  24) devised a s implif ied model f o r  
a i r  i n  equilibrium. The par t  of t h i s  work dealing with thermodynamic prop- 
e r t i e s  has f a l l e n  i n t o  disuse because of t h e  f e a s i b i l i t y  of tabulat ing (and 
including i n  machine programs) t h e  r e s u l t s  of more accurate calculat ions.  
t h e  case of nonequilibrium flows, however, such tabulat ions a r e  not p a c t  i c a l .  
Consequently, t h e  basic ideas of Hansen a r e  useful  i n  a nonequilibrium model 
f o r  a i r  and have been applied with s l i g h t  modifications i n  t h e  present work. 

I n  

Equations of S t a t e  

The species t o  be included i n  t h e  expressions representing the  equations 
of s t a t e  a r e  

N ~ ,  02, N, 0, N+, o+, e- 

A t  equilibrium any other species t h a t  may be present i n  t r a c e  amounts do not 
a f f e c t  t h e  equations of s t a t e  importantly. We assume t h a t  t h i s  w i l l  be t r u e  
i n  t h e  nonequilibrium s t a t e s  of main i n t e r e s t  a lso.  The omission of NO from 
t h e  system permits the  use of L i g h t h i l l  var iables ,  t h a t  i s ,  degrees of disso- 
c i a t i o n  and ionizat ion.  The atom conservation equations a re  thereby removed 
f r o m t h e  system of equations t o  be solved i n  nonequilibrium problems. 
t h e  equations of s ta te  can be wr i t ten  

Then 
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p = RpZT 

r 1 

+ -  (3) 
% JN, + a- WOOD ~ 0 2  + '@I J N  

T b T  
+ e  WN- ( 2T b 2T 

where 

The term e, 
and i s  given by the  sum of equations ( h a )  and (4b) when v ibra t ions  a re  i n  
equilibrium. The descr ip t ion  of e, f o r  nonequilibrium molecular v ibra t ion  
i s  given subsequently. The parameter a i s  t h e  r a t i o  of t h e  t o t a l  m a s s  of 
oxygen t o  the  t o t a l  mass of ni t rogen i n  a sample of t h e  gas mixture, and b 
i s  the  r a t i o  of molecular weights %/MN. The quan t i t i e s  wN and YN are  the  
L i g h t h i l l  var iab les  representing the  degrees of d i ssoc ia t ion  and ion iza t ion  , 
respect ively,  of nitrogen; wo and yo are  the  corresponding var iab les  f o r  
oxygen. The r e l a t ionsh ip  between these var iab les  and t h e  species concentra- 
t i o n s  i s  given i n  the  appendix. Table I contains the  values of t h e  f ixed  

i s  the  v ib ra t iona l  contr ibut ion t o  t h e  energy (pe r  unit  mass) 
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constants.  These expressions correspond t o  Hansen's model except f o r  the  use 
of truncated harmonic o s c i l l a t o r s  f o r  the  v ib ra t iona l  energies and the  addi- 
t i o n  of a few more terms in the  e lec t ronic  energies of the  species.  The l o c a l  
equilibrium values of t he  L igh th i l l  var iab les  can be expressed in  the  
following form t h a t  is convenient fo r  ca lcu la t ion .  

Qel ,o+ 
mN csYf2 QelJ0 

2(1 + a)  
PI,O = p 

and the Qel are  the  electronic  p a r t i t i o n  functions f o r  species j .  Again 

numerical values of the  constants are  given i n  t ab le  I .  
J 

We have compared the  values of compressibil i ty Z and spec i f ic  enthalpy 
h a t  equilibrium with those of Hilsenrath and Beckett ( r e f .  2 5 )  and found 
them t o  deviate by l e s s  than 3 percent a t  temperatures up t o  25,000° K i n  the  
densi ty  range 0.001-1 .O times atmospheric dens i ty .  

6 



Ionization has been included i n  t h e  equations of s t a t e  so  t h a t  calcula- 
t i o n s  involving high-temperature equilibrium regions can be made without 
switching t o  a d i f fe ren t  gas model. 
considered. Thus wherever t h e  quant i t ies  yN and yo appear (eqs. (2)  t o  ( 5 ) ,  
(8) and (9)  ), they should be s e t  equal t o  respectively (eqs . (10) 
and (11) ) . 
equal t o  zero. 

Ionizat ion nonequilibrium w i l l  not be 

y and yo Ne e 
A t  temperatures below about 10,OOOo K, yN and yo could be s e t  

Rate Equations 

Rate equations leading t o  values of e,, wN and wo appearing i n  equa- 
Ionization and e lec t ronic  t i o n s  (2)  and (3)  a r e  needed t o  complete the model. 

exc i ta t ion  a re  taken t o  be i n  equilibrium. 

Vibrational nonequilibrium equations .- The r a t e  equations required f o r  
uncoupled v ibra t iona l  nonequilibrium are  i n  a form 

where 

The subscript  v denotes vibration, subscript  e r e f e r s  t o  l o c a l  equilibrium 
value (eqs.  ( h a )  and ( 4 b ) )  and the  i indicates  species (N2 or 02) .  The 
var iable  T V ~  i s  a c h a r a c t e r i s t i c  re laxat ion time (values of - r V i  obtained 
from r e f .  19 a r e  given i n  t a b l e  II(b)).  The quant i ty  e, i n  equation (3)  i s  
t o  be evaluated as 

ra ther  than ev - - eveo2 + eveN2 as indicated previously for vibrat ional  equi- 
librium. The quant i t ies  evN2 and e, a r e  obtained from equation ( l7a ) ;  f o r  
example, 02 

(19) - 
vN2 e vN2 - %eN2 - E 

Chemical nonequilibrium equations .- The chemical equations of main i n t e r -  
e s t  a r e  t h e  d issoc ia t ion  react ions 

3. N O + M Z N + O + M  (22) 

and t h e  bimolecular exchange react ions 

7 



. ... ~ . . . . . ... _. . ... - - 

4. 0 2 + N Z N O + O  (23) 

where M denotes any one of t h e  const i tuents  t h a t  i s  c a t a l y t i c  i n  i t s  e f f e c t  
on a react ion.  

The bimolecular exchange react ions (23) and (24) and t h e  NO 
dissociation-recombination reac t ion  (22) a r e  considered t o  be t h e  pr inc ipa l  
mechanisms t h a t  e s t a b l i s h  the  balance of n i t r i c  oxide i n  t h e  system. From 
equilibrium s tudies  it i s  expected t h a t  the  n i t r i c  oxide w i l l  be present i n  
small enough amounts t o  have negl igible  e f f e c t  on t h e  compressibil i ty Z and 
enthalpy h. However, i t s  presence cannot be ignored since the  foregoing 
react ions taken as a chain can s i g n i f i c a n t l y  a f f e c t  t h e  r a t e  of formation of 
N2 from N atoms ( r e f .  11). 
s t a n t  i n  such a chain reaction, t h e  s teady-state  approximation ( i n  which t h e  
net r a t e  of production of NO i s  taken t o  be zero) w i l l  be employed. 
approximation leads t o  an expression f o r  t h e  amount of NO present i n  terms of 
t h e  amounts of t h e  more abundant species.  That expression can then be used i n  
t h e  r a t e  equations s o  t h a t  t h e  amount of NO no longer appears as a var iable .  

Since the  amount of NO would be r e l a t i v e l y  con- 

This 

Upon completion of t h e  foregoing s teps  and rearrangement, t h e  r a t e  equa- 
t i o n s  can be wr i t ten  

(25) 
( W N e  - w I f  (woe  - w0)fO +N, dw 

d t  
- _ -  N +  d(WNe - W N )  

d t  TNN TNO 

Additional d e t a i l s  of t h e  der ivat ion a r e  given i n  t h e  appendix. The quanti-  
t i e s  fN, fo,  and T a r e  given i n  terms of the  s t a t e  var iables  by t h e  
r e l a t i o n s  

8 



I 

The equilibrium constant, E&, was obtained from reference 8. 
undefined funct ions and constants a r e  given i n  t a b l e  11. The r a t e  constants 
u t i l i z e d  here a re  taken from reference 12. 

The remaining 

The quan t i t i e s  TN and TO a r e  t h e  values of T" and TOO, respect ively,  
t h a t  would apply i n  t h e  absence of t h e  react ions involving NO (i .e. ,  f o r  pure 
ni t rogen or pure oxygen). 
t i o n s  ( 2 5 )  and ( 2 6 )  would be absent.  Thus t h e  quan t i t i e s  
and ( ~ 0 0 ) ~  TN and TO 
a r e  due t o  t he  ni t rogen and oxygen d issoc ia t ion  reac t ions .  
observe the  behavior of these  quan t i t i e s  evaluated under equilibrium conditions. 

For those cases, t h e  coupling terms i n  equa- 
TNO, TON, (T " )~ ,  

can be associated with the  react ions involving NO, while 
It is inst ruct ive t o  

Figure l ( a )  i s  a p l o t  of t h e  quant i ty  p ~ "  at equi l ibr ium as a func t ion  
of temperature with dens i ty  as a parameter. 
t i o n  of pure ni t rogen TN and d issoc ia t ion  of pure oxygen TO a l s o  appear i n  

9 

The r eac t ion  times f o r  dissocia-  



t h e  f igure .  The products p~ a r e  p lo t ted  r a t h e r  than  T because of t h e  
r e s u l t i n g  suppression of densi ty  dependence. A t  low temperatures T" i s  
approximately equal t o  
exceed TO and eventually approaches T ~ .  Thus i n  t h e  low temperature range 
t h e  n i t r i c  oxide chain react ions accelerate  the  d issoc ia t ion  (or recombination) 
of nitrogen i n  such a manner as t o  make T" more near ly  equal t o  -r0 than 
t o  TN. 

bring about a d i r e c t  coupling between t h e  degrees of d i ssoc ia t ion  of nitrogen 
and oxygen such t h a t  one cannot be i n  equilibrium unless t h e  other i s  also.  
The c h a r a c t e r i s t i c  time for the  r a t e  of d i ssoc ia t ion  of nitrogen due t o  
a nonequilibrium condition of t h e  oxygen i s  p l o t t e d  i n  f i g u r e  l ( b )  . 

T ~ ,  but with increasing temperature it begins t o  

I n  addi t ion  equations (25) and (26) ind ica te  t h a t  t h e  NO react ions 

TNO 

Figure 2 ( a )  i s  a p lo t  of ~ ~ 0 0 .  It i s  seen t h a t  TOO does not deviate 
TO, p a r t i c u l a r l y  a t  t h e  lower g r e a t l y  from t h e  reac t ion  time of pure oxygen 

t h e  nitrogen w i l l  a f f e c t  the r a t e  of d i ssoc ia t ion  of oxygen. 
time'corresponding t o  t h i s  e f f e c t  TON i s  p lo t ted  i n  f i g u r e  2(b) .  Note t h a t  
t h e  values of t h e  react ion times appearing i n  f i g u r e s  1 and 2 were evaluated 
a t  equilibrium. However, t h e i r  dependence on t h e  composition i s  weak and w i l l  
not deviate g r e a t l y  i n  nonequilibrium s t a t e s .  This i s  not t r u e  of t h e  f a c t o r s  
fN and f o  appearing i n  equations (25) and (26) and evaluated i n  equations (27) 
and (28) .  These quant i t ies  a r e  usually of order 1.0 but can become large i n  
some circumstances. 
equilibrium value of the  degree of d i ssoc ia t ion  of nitrogen ( W N ~  - y ~ )  becomes 
s m a l l ,  t h e  f a c t o r  f N  w i l l  be large.  For t h i s  reason, i f  the  degree of d i s -  
sociat ion of nitrogen i s  small, t h e  nitrogen reac t ion  can be near ly  i n  equi- 
l ibrium while t h e  oxygen reac t ion  i s  frozen. This i s  an exception t o  t h e  
foregoing argument t o  t h e  contrary t h a t  w a s  based on the  values of T without 
consideration of t h e  values of fN and f o .  

. dens i t ies .  However, equation (26) shows t h a t  a nonequilibrium condition of 
The react ion 

For example, equation (27) shows t h a t  when t h e  l o c a l  

NONEQUILIBRIUM CHANNEL FLOW CAICULATIONS 

The r e l a t i o n s  presented i n  t h e  previous sect ion a r e  applicable t o  a wide 
range of flow problems including steady and unsteady one-, two-, and three-  
dimensional flows. We s h a l l  consider only t h e  quasi-one-dimensional case here. 
I n  previous calculat ions of t h i s  type one d i f f i c u l t y  t h a t  has plagued inves- 
t i g a t o r s  i s  the  s ingular  perturbation e f f e c t  t h a t  a r i s e s  i n  near equilibrium 
flow. The nature of t h e  d i f f i c u l t y  i n  t h e  case of one-dimensional flow can be 
c l a r i f i e d  by reference,  f o r  example, t o  equation (16) .  I n  a numerical i n t e -  
grat ion procedure such as the Runge-Kutta method, t h e  r i g h t  s ide of equa- 
t i o n  (16) would be evaluated numerically severa l  times a t  each s tep.  
near equilibrium region t h e  f a c t o r  ( ~ v i ) - l  becomes large and 
becomes small while the product r e t a i n s  an intermediate value t h a t  cannot be 
neglected. From a numerical viewpoint it i s  c l e a r  t h a t  evaluation of t h e  
product w i l l  e n t a i l  a small difference when evei  - e v i  i s  small. One 
observes t h a t  t h e  chemical r a t e  equations (eqs. (25) and ( 2 6 ) )  contain the  same 
near equilibrium indeterminancy. For a gas system involving many react ions 
t h e  problem i s  amplified by the occurrence of many terms of t h i s  type which 
may exhibi t  improper behavior a t  d i f fe ren t  points  i n  t h e  flow f i e l d .  Various 
remedies f o r  t h e  d i f f i c u l t y  have been found ( r e f s .  26 t o  28, 11, 19, and 20).  

I n  a 
E V ~  = eve: - evi  
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It i s  perhaps f a i r  t o  s t a t e  t h a t  
small  s t e p  s i z e  i n  t h e  numerical 

i n  prac t ice  these  methods lead  t o  a very 
in tegra t ion .  I n  contrast ,  t h e  procedure t o  

be described here leads t o  accurate in tegra t ions  t h a t  require  no smaller s t e p  
s i z e  than i s  needed f o r  t he  corresponding equilibrium flow. Furthermore, t h e  
same nonequilibrium equations a re  used i n  the  e n t i r e  flow f i e l d  including non- 
equilibrium, near-equilibrium, and equilibrium regions. Recently th ree  new 
methods f o r  in tegra t ing  chemical r a t e  equations have appeared i n  the  l i t e r a -  
t u r e  ( r e f s .  29 t o  31). 
i n  near-equilibrium flows. We have developed t h e  required technique f o r  i n t e -  
gra t ing  an a r b i t r a r y  number of equations ( r e f .  32), including coupled- 
v ib ra t iona l  nonequilibrium, but t h e  procedure f o r  t h e  general  case w i l l  not be 
considered here. 

These methods a l s o  permit g r e a t l y  increased s t e p  s i z e  

The crux of t h e  method l i e s  i n  t h e  in tegra t ion  of equations (16), (23) ,  
For example, equation (16) may be i n t e -  and (26) over a small i n t e r v a l  A t .  

grated exac t ly  t o  obtain 

L J 

The subscr ipts  1 and 2 def ine the  i n t e r v a l  of in tegra t ion  and At = t2 - tl. 
Using mean value i n t e g r a l  theorems, we may wr i te  equation (39) 

The subscr ipts  and 52 denote t h a t  T V ~  and the  product (AviTvi) a r e  
evaluated a t  d i f f e ren t  i n s t a n t s  of time i n  t h e  i n t e r v a l  A t  which includes 
both El and E 2 .  The closed form in tegra t ion  given by equation (40 )  i s  exact,  
but i n  prac t ice  it i s  d i f f i c u l t  t o  evaluate s ince t h e  quan t i t i e s  (Tvi)kl and 
(AviTvi)E2 a re  not r ead i ly  obtained. However, i f  Tvi and Avi a re  evaluated 
a t  t h e  midpoint of t he  i n t e r v a l  A t  and a re  monotonic over t he  in t e rva l ,  it 
can be shown t h a t  t h e  e r r o r  i n  i s  of order 

I n  nonequilibrium regions of a channel f l o w  ca lcu la t ion  t h e  ~~i has 
small enough values t h a t  t h e  exponentials i n  equation (40)  could be expanded 
t o  order ( A t ) 2  without l o s s  of accuracy. 
i n  a numerical i n t eg ra t ion  of equation (16) or f o r  t h a t  matter of equa- 
t i o n s  (25) and (26) .  For near-equilibrium regions, however, T T J ~  becomes 
small, SO t h e  expansion i s  va l id  only f o r  very small A t .  T h i s  i s  the  reason 
a small s t e p  s i z e  would be required f o r  numerical in tegra t ion  of equation (16). 
If t h e  closed form in t eg ra t ion  i s  used instead,  t h e  e r ro r  becomes vanishingly 
s m a l l  under these conditions because of t h e  exponential f a c t o r  i n  t h e  e r r o r  
term above. 

There would then be no d i f f i c u l t y  



The ideas incorporated i n  t h e  in tegra t ion  of t h e  v i b r a t i o n a l  rate equation 
a r e  adaptable t o  in tegra t ion  of t h e  coupled chemical rate equations given by 
equations (25) and (26). For t h a t  purpose these  equations can be wr i t ten  i n  
t h e  form 

(42) 
d e l  - =  - a l l e l  + a12ez + A 1  

(43) - -  d e ~  - a 2  €1 - a22e2 + A~ 
d t  

where 

€1 = WNe - W N  

e2 = - wO 

( 44a) 

( 44b 1 

( 44c 1 a l l  = fN/T" 

a12 = fO/TNO ( 4 4 d  

a21 = ~ N / T O N  

a22 = fO/T00 

A 1  = dwN e /dt 

A2 = dwo e /dt 

( 44e ) 

( 44f 1 

( 44g) 

( 44h) 

The quant i t ies  e1 and €2 a r e  chemical nonequilibrium var iab les  s imilar  i n  
i n  t h a t  they a r e  measures of t h e  departure from equilibrium. character t o  

The closed-form so lu t ion  of these equations i s  
evi 

where 

B 1 1  = [ ( a l l  - X2)Ep1 - a12ep21/(h - 12) ( G b )  

Bl.2 = - [ (a11  - hl)Epl - a l z ~ p 2 1 / ( A l  - h.2) 

Epl = ( 4 0  - c1 

( G c )  

( G d )  

( 46e 1 

c1 = (a224 + a12A2)/(a11a22 - a12a21) 

The quant i t ies  
by ioterchanging indices  1 and 2. a r e  t h e  
valu$s of e1 and e2 a t  t h e  beginning of t h e  i n t e r v a l  A t .  This i s  not an 
exact in tegra t ion  s ince t h e  
inte$val A t  

Bz2, B21, C 2 ,  and cP2 can be obtained from t h e  above r e l a t i o n s  
The quant i t ies  (e1)o and (e2)0 

a i j  and A i  are evaluated at  t h e  midpoint of t h e  
i n  t h e  same manner as suggested i n  t h e  discussion following t h e  
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in tegra t ion  of the  v ibra t iona l  r a t e  equations. The e r r o r  i s  of t h e  same order 
as given by t h e  re la t ion ,  equation (41) .  

The remaining equations f o r  quasi-one-dimensional flow can be found i n  
many of t h e  foregoing references (e.g., r e f .  8) .  
be repeated here,  The closed form in tegra t ion  of t h e  r a t e  equations could be 
combined with t h e  remaining flow equations i n  several  ways. We-have used an 
i t e r a t i o n  procedure. O u r  program includes options f o r  performing in tegra t ions  
with a specif ied pressure d i s t r i b u t i o n  
A(x). I n  t h e  l a t t e r  case a procedure i s  included f o r  i t e r a t i n g  t o  f i n d  t h e  
mass flow i n  t h e  presence of nonequilibrium e f f e c t s  ahead of t h e  throa t .  Inte-  
grat ions from t h e  stagnation region t o  t h e  t h r o a t  a r e  then usual ly  repeated 
three  o r  four  times. Provision i s  made f o r  i t e r a t i n g  t o  f i n d  t h e  conditions 
behind a normal shock, and by s e t t i n g  
l ibrium flow behind a normal shock can be calculated.  

To save space these  w i l l  not 

p(x)  or a specif ied area d i s t r i b u t i o n  

A(x) equal t o  a constant, t h e  nonequi- 

O u r  program contains options f o r  including or excluding uncoupled vibra- 
t i o n a l  nonequilibrium e f f e c t s .  Any of the  r a t e  constants can be separately s e t  
equal t o  a large value t o  obtain calculat ions corresponding t o  p a r t i a l  or com- 
p le te  equilibrium. Also the  r a t e  constants can be s e t  equal t o  zero t o  obtain 
frozen flow calculat ions.  I n  a l l  of these cases the  in tegra t ion  method i s  
unchanged and remains the  same i n  a l l  regions of t h e  flow since it is  v a l i d  i n  
the  e n t i r e  spectrum of equilibrium, nonequilibrium, and frozen flows. The s t e p  
s i z e  i s  var iable  t o  conform with t h e  requirement of a specif ied permissible 
deviation of t h e  values of the  key var iables  computed i n  two d i f f e r e n t  ways 
( d i r e c t  calculat ion and extrapolat ion from r e s u l t s  a t  previous p o i n t s ) .  
nonanalytic behavior of t h e  spec i f ied  function A(x) leads t o  a decrease i n  
s t e p  s i z e  and i s  followed f a i t h f u l l y  by t h e  calculat ion.  Accurate calculat ion 
of a nozzle flow ( l e s s  than 0.1 percent change from reducing t h e  s t e p  s i z e  
c r i t e r i o n  by a f a c t o r  o f  2.0) t y p i c a l l y  requires  l e s s  than 200 s teps .  The 
average computing time on an IBM 7094 i s  about 45 seconds per case f o r  equi l ib-  
r ium,  nonequilibrium, or frozen-f low calculat ions.  

Thus 

EVALUATION OF APPROXIMATE MODEL 

The major consideration here i s  t o  evaluate the  use of t h e  s teady-state  
approximation as a means of simply including t h e  e f f e c t s  of t h e  bimolecular 
exchange react ions.  This i s  perhaps best  done by comparison o f . t h e  r e s u l t s  
with other numerical calculat ions and with experiment. For t h e  comparisons 
with other numerical calculat ions we have chosen t h e  work of Emanuel and 
Vincenti ( r e f .  9) and t h e  work of Eschenroeder, Boyer, and H a l l  ( r e f .  11). 
Complete l i s t i n g s  f o r  t h e  l a t t e r  calculat ion including temperature, pressure, 
and composition p r o f i l e s  were kindly provided upon request by D r .  D .  W .  Boyer 
of t h e  Cornell  Aeronautical Laboratory. 
based on references 2 1 t o  23, 33, and 34. 

The experimental comparisons a r e  

Figure 3 includes temperature p r o f i l e  p l o t s  of a nozzle ca lcu la t ion  
obtained from t h e  model and from Emanuel and Vincenti ( r e f .  9 ) .  
differences indicate:  (1) t h a t  t h e r e  a r e  no gross e r r o r s  i n  e i t h e r  calcula- 
t ion;  and ( 2 )  t h a t  the  s teady-state  approximation f o r  t h e  n i t r i c  oxide chain 

The small 



I 

react ions i s  v a l i d  f o r  t h i s  case. 
sure, density, and v e l o c i t y  a r e  less sens i t ive  t o  t h e  gas model used than  i s  
t h e  temperature. 
curves and t h e  model r e s u l t s  f o r  these var iables .  

The other flow f i e l d  var iables  such as pres- 

No observable differences were noticed between the  published 

The compositions r e s u l t i n g  from the  two calculat ions a r e  compared i n  
f i g u r e  4. Here t h e  differences a r e  grea te r  because of the  omission of n i t r i c  
oxide from our model. Consequently, t h e  amounts of N2, 02, N, and 0 a r e  a l l  
l a r g e r  i n  our ca lcu la t ion  than  i n  t h a t  of Vincenti and Emanuel. However, t h e  
s i t u a t i o n  here i s  s imi la r  t o  t h a t  which e x i s t s  i n  t h e  comparisons a t  equi l ib-  
r ium, previously discussed. Namely, replacing NO with varying amounts of t h e  
other species i n  t h e  equations of s t a t e  has l e s s  e f f e c t  on the  enthalpy h and 
t h e  compressibil i ty Z than  might a t  f irst  be expected. This i s  borne out by 
the  close agreement between temperature d i s t r i b u t i o n s  shown i n  f igure  3. The 
composition p r o f i l e s  may be computed more accurately if a correct ion discussed 
i n  the  appendix i s  used. This w a s  not done here t o  emphasize the  f a c t  t h a t  a 
good comparison i s  obtainable without accurate values f o r  the  concentration 
var iables .  

Figure 5 shows four  separate p l o t s  of temperature versus area r a t i o .  One 
p a i r  of curves represents  a comparison of the  model with t h e  r e s u l t s  of 
Eschenroeder, e t  a l .  ( r e f .  11) where the  chemistry i s  i n  nonequilibrium and t h e  
v ibra t iona l  degrees of freedom a r e  i n  equilibrium. The other p a i r  of curves i s  
a comparison of calculat ions assuming complete equilibrium. One observes t h a t  
t h e  equilibrium calculat ions a r e  i n  excel lent  agreement, as would be expected. 
The differences a r e  g r e a t e s t  a t  the  lower temperatures (and fa r  downstream of 
t h e  t h r o a t )  where t h e  omission of n i t r i c  oxide f r o m t h e  equations of s t a t e  has 
i t s  l a r g e s t  e f f e c t  on t h e  enthalpy and compressibil i ty.  The differences a r e  
greater ,  however, i n  t h e  comparisons of t h e  nonequilibrium calculat ions 
although t h e  agreement i s  s t i l l  excellent a t  t h e  t h r o a t  where the  flow f i e l d  
i s  i n  l o c a l  equilibrium. 
longer f o r  t h e  model than t h e  r e s u l t s  of Eschenroeder, Boyer, and H a l l  indicate. 
Whether t h e  differences a r e  due t o  the  NO approximation o r  t o  the  d i f fe ren t  
methods used i n  in tegra t ing  the near-equilibrium region of t h e  flow f i e l d  i s  
d i f f i c u l t  t o  determine. We did compare the  n i t r i c  oxide concentration obtained 
from the  s teady-state  approximation with t h a t  obtained from a more accurate 
r e l a t i o n  (see appendix) and noted l i t t l e  difference.  

Downstream the  flow f i e l d  remains i n  equilibrium 

I n  f i g u r e  6 r e s u l t s  a r e  compared f o r  the  corresponding pressure prof i les .  
Although the  differences a r e  smaller they s t i l l  show t h e  same character as 
discussed above, t h a t  is, t h e  comparisons a r e  i n  good agreement i n  the  equi l ib-  
r i u m  region of t h e  flow f i e l d  near t h e  throa t .  
t h e  composition p r o f i l e s .  Here the  concentration var iables  a r e  corrected by 
t h e  method described i n  t h e  appendix. The curves corresponding t o  the model 
a r e  labeled Y i e  o r  7-i depending on whether t h e  var iab les  r e s u l t  from an equi- 
l i b r i u m  or nonequilibrium calculat ion.  The r e s u l t s  of Eschenroeder a r e  indi-  
cated by ( 
deviations begin i n  t h e  near-equilibrium region of the  flow f i e l d .  

Figure 7 shows a comparison of 

)c .  A s  before, the  agreement i s  excel lent  near the throa t  and 

Nagamatsu and Sheer have published experimental data  on v ibra t iona l  relax- 
a t i o n  and recombination of nitrogen and a i r  i n  hypersonic nozzle flows 
( r e f s .  33 and 34).  Their data  a r e  given i n  t h e  form of t h e  r a t i o  of s t a t i c  
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pressure t o  reservoi r  pressure versus reservoi r  temperature a t  various speci-  
f i e d  reservoi r  pressures,  and a t  a s t a t i o n  i n  t h e  nozzle where t h e  a rea  r a t i o  
(A/A*) i s  equal t o  144. 
channel flow calculat ions f o r  t h e  nozzle shape spec i f ied  i n  reference 33. The 
r e s u l t s  are shown i n  f igu res  8 and 9 f o r  nitrogen and a i r ,  respect ively.  
each of t h e  f igu res  t h e  c i r c l e s  a re  the  data  points  of Nagamatsu and Sheer 
while t h e  four  s o l i d  curves represent  calculat ions using t h e  model. 
i t y  t h e  s o l i d  l ine  curves are  labeled with the  numerals (1) through ( k ) ,  respec- 
t i v e l y ,  designating t h e  following types of flow f i e l d  calculat ions:  

We have made a s e r i e s  of (about 180) nonequilibrium 

I n  

For brev- 

(1) Complete equilibrium 

(2 )  Chemical nonequilibrium; v ib ra t iona l  equilibrium 

(3) Chemical and v ibra t ion  nonequilibrium ( f o r  pure nitrogen ( f i g s .  8(a), 
( b ) ,  and ( c ) ) ,  t h e  v ib ra t iona l  r a t e  constants a r e  from r e f .  19, while 
f o r  a i r  ( f i g s . g ( a ) ,  (b ) ,  and ( c ) ) ,  t h e  v ib ra t iona l  r a t e s  are those 
of r e f .  35) 

(4) Frozen (a t  t h e  r e se rvo i r  conditions) 

The equilibrium and frozen flow calculat ions a r e  included t o  e s t ab l i sh  t h e  
t rends indicated by the  experimental r e s u l t s .  Equilibrium flow f i e l d  calcula- 
t i ons  correspond t o  an in f in i t e s ima l ly  small re laxa t ion  time ( i n f i n i t e  r a t e  
constant) ,  while frozen ca lcu la t ions  correspond t o  an i n f i n i t e l y  la rge  relaxa-  
t i o n  time (zero  r a t e  constant) .  

The model r e s u l t s  for pure nitrogen a r e  given i n  f igu res  8 (a ) ,  ( b ) ,  and 
( c )  and represent  exact ca lcu la t ions  s ince no assumptions a r e  involved ( t h e  
s teady-state  approximation does not apply he re ) .  
5000° K there  i s  a negl ig ib le  amount of nitrogen molecular d i ssoc ia t ion  s ince 
curves (1) and (2 )  a r e  coincident.  
(3)  and the  experimental data a r e  then due pr imari ly  t o  v ib ra t iona l  nonequilib- 
rium. 
between the  curves labeled (2 )  and (3)  indicat ing t h a t  t h e  v ib ra t iona l  r a t e  
constants used here a r e  too  small. This i s  i n  accord with references 21  and 22 
where it i s  suggested t h a t  t h e  v ib ra t iona l  r a t e s  obtained from shock tube 
experiments must be g rea t e r  by a f a c t o r  of 15 i n  order t o  agree with expanding 
flow measurement s . 

One observes t h a t  below 

The nonequilibrium e f f e c t s  indicated by 

The experimental data  points  i n  f igures  8(a),  ( b ) ,  and ( c )  a l l  l i e  

I n  f igu res  9(a) ,  (b) ,  and ( c )  t h e  experimental r e s u l t s  a r e  compared with 
t h e  model ca lcu la t ions  f o r  air. The experimental r e s u l t s  are ,  i n  general, on 
or above (3),  t h e  curve represent ing v ib ra t iona l  equilibrium. 
these comparisons f o r  a i r  i s  i n  accord with references 22 and 23 where it i s  
shown t h a t  t h e  chemical equations given by equations (20) t o  
t i o n s  i n  equilibrium (i.e., t h e  model given i n  r e f .  11) provide t h e  mechanism 
f o r  experimental agreement. 

The t r end  of 

(24) with vibra-  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., May 5 ,  1965 
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SUPPLEMENTARY EQUATIONS AND DERIVATIONS 

Relationship Between L i g h t h i l l  Variables and Species Concentrations 

The species  concentrations y i  (moles of i per  u n i t  mass of gas) of t h e  
ni t rogen components are given by t h e  r e l a t i o n s  

1 - WN - 
YN2 - 2 't ,N 

Yfl = (wN - Y N ) Y t , N  

yN+ = YN Y t , N  

(A2)  

(A3  1 
Corresponding expressions for 
r e l a t i o n s  by replacing t h e  subscr ipt  N with an 0. The values of ye- and 
t h e  constants yt-~, yt-0 a re  

yO2, 70, and yo+ can be obtained f r o m t h e  above 

a 
Y t , O  = Y t , N  

where MN i s  t h e  molecular weight of atomic nitrogen. 

Chemical Rate Equations f o r  Dissociat ion Reactions 

The r a t e  equation f o r  reac t ion  1 (eq. (20) )  can be wr i t t en  (see, e.g., 
r e f .  12) / 

The subscr ipt  1 i n  dLyN2/dt 
m2 due t o  reac t ion  1. The index 2 r e f e r s  t o  t h e  c a t a l y t i c  body involved 
(e.g., N2, 02, e tc . ) .  
becomes 

ind ica tes  t h a t  t h i s  i s  the  r a t e  of change of 

Upon subs t i t u t ion  of equations ( A l )  and ( A 2 ) ,  t h i s  

d t  Kl 2 P  yt,N(WN - yN)2] (A81 
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An expression f o r  t h e  equilibrium constant 
r i u m  var iab les  can be found upon noting t h a t  t h e  quant i ty  i n  square brackets 
i s  zero a t  equilibrium; namely, 

K1 i n  terms of t h e  l o c a l  equi l ib-  

Subs t i tu t ing  t h i s  i n t o  (A8) and rearranging y ie lds  

where f N  and TN a re  given i n  equations (27) and (33).  The corresponding 
rearrangement of t h e  rate equation f o r  reac t ion  2 i s  formally the  same, but 
with the  subscr ipt  1 replaced by 2, and t h e  N subscr ip ts  replaced by 0. The 

r a t e  constants kfi a r e  given by 
2 

2 
where t h e  kfi and 6 i  a r e  l i s t e d  i n  t a b l e  11, which i s  based on reference 12. 

Steady-State Approximation 

Rate equations corresponding t o  react ions 3, 4, and 5 can be expressed a s  

The equilibrium constant 
expressed i n  terms of K1, K2, and & ’by t h e  r e l a t i o n s  

K& i s  given i n  equation (38), while K4 and Kg can be 

7F 

h2 K4 = - 
K3 

K1 
K3 

K5 = - 

Fromthe above expressions, t h e  t o t a l  r a t e  of change of yN0 can be wr i t ten  



I n  t h e  c l a s s i c a l  s teady-state  approximation (ref.  36), dYNO/dt 
zero s o  t h a t  a value of  NO can be obtained from t h e  above re la t ion ;  namely, 

i s  s e t  equal t o  

2 

0 where t h e  superscr ipt  zero denotes t h a t  
for t h e  amount of n i t r i c  oxide. This value of y i o  i s  then subs t i tu ted  i n  
equations ( A 1 2 )  t o  ( A 1 4 )  t o  obtain approximate r a t e s  of change of 
due t o  t h e  react ions involving NO. 
( ~ 1 6 ) ,  ( A l ) ,  ( A 2 ) ,  ( A 9 ) ,  and t h e  corresponding r e l a t i o n s  f o r  
rearrangement, the  r a t e  of change of WN 

w r i t t e n  

7 ~ 0  i s  a zeroth order approximation 

7, and yo 
Upon f u r t h e r  subs t i tu t ion  of equations (Al5) ,  

yo,, yo, K2, and 
due t o  t h e  NO react ions can be 

d3W~ d 4 W ~  ~ S W N  (WNe - W N ) f N  - W0)fO 
+-  + - =  ( A l 9 )  - 

d t  d t  d t  (%“N S TNO 

I n  t h e  der ivat ion of t h i s  equation, terms of the  type d 4 y ~ / d t  appear. It can 
be seen t h a t  such terms a r e  zero by noting f o r  example t h a t  t h e  foregoing term 
i s  proportional t o  d,yN+/dt. The l a t t e r  quant i ty  i s  c l e a r l y  zero (i .e. ,  t h e  
r a t e  of change of Expressions f o r  the  func- 
t i o n s  f N ,  fo, ( T ~ ) ~ ,  TNO a r e  given i n  t h e  t e x t .  Final ly ,  equation ( 2 5 )  i s  
a r r ived  a t  by adding dlwN/dt t o  obtain t h e  t o t a l  r a t e  of change of wN. 
The corresponding r e l a t i o n s  f o r  dwo/dt can be obtained from the  above by 
interchanging subscr ipts  4, 5, and N, 0. 

~ N - I -  due t o  react ion 4 i s  zero) .  

Correction for Species Concentration Resulting 
From Ni t r ic  Oxide Omission 

Equation ( ~ 1 8 )  y ie lds  the n i t r i c  oxide concentration r e s u l t i n g  from t h e  
use of t h e  s teady-state  approximation. To assess  t h e  accuracy of t h i s  approx- 
imation, ygo may be compared with y io  obtained by integrat ing t h e  n i t r i c  
oxide r a t e  equation given by equation ( A l 7 ) .  
s imi la r  t o  t h a t  used t o  obtain equations (40) and (45).  
r e  pr e s ent ed by 

This i s  done by using a method 
Equation ( A l 7 )  may be 

- -  - -AyNo + B 
d t  

18 
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The var iable  includes a l l  t h e  terms i n  equation ( A l 7 )  t h a t  do not include 
yNo and t h e  var iable  A represents a l l  t h e  terms with 7 ~ 0  factored out. 
Equation (A20) i s  then integrated by the  same procedure discussed i n  t h e  t e x t  
t o  obtain 

B 

r;o = (YjIj0)o exp(-A At> + [1 - exp(A At)l$O 

Here t h e  r a t i o  B/A i s  replaced by ?io obtained from the  steady-state approxi- 
mation and ( ~ N O ) O  represents  t h e  value of ~ $ 0  at t h e  beginning of t h e  i n t e r -  
v a l  (see paragraph i n  t e x t  preceding eq. (41)). 

1 

The values of A and y&-j a r e  obtained by evaluation a t  t h e  beginning of 

The corrections t o  t h e  number of nitrogen and oxygen atoms, yt ,N and 
t h e  in te rva l .  The y i  contained i n  A and 780 a r e  corrected i n  t h e  following 
manner. 
yt-0, a r e  given by 

where 7t.N and yt,O a r e  given by equations (A5)  and ( A 6 ) ,  respectively.  Sub- 
s t i t u t i n g  yt ,N i n t o  equations ( A l )  t o  ( A 3 )  and yt,O i n t o  the  corresponding 
r e l a t i o n s  for t h e  oxygen species y ie lds  t h e  corrected values of the  species 
concentrations. 

1 1 
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TABU I.- FIXED CONSTANTS REQUIFED FOR NITROGEN Am OXYGEN MIXTURES 

1 4 1  0 5  0 1 0 4 0 3  0 1  0 2 0 
2 10 27657 3 228.0 3 70.6 10 38578 2 1 11390 
3 6 41485 1 325.8 5 188.9 6 58211 1 18990 

5 6 123962, 1 48609 I 1 , 47019 10 238772 1 I 

6 12 126793 5 106112 5 67849 1 

I 

4 12 119858 5 22825 5 22031 12 172529 

L 
Iu 
W 



Reaction 
equation 
number, i 

1 

2 

3 

4 

5 

TABU 11.- FATE CONSTANTS 

(a)  Chemical Nonequilibrium Rate Constants 

Cata ly t ic  

2 
b 0d-Y Y 

a2 

02 

02 

0 
N 2  
N 

0 

N 

. .  . 

Forward r a t e  
constant , 1 

kf, i 

3 / 2  e x p ( . T )  

1.0X1012T1'2 exp (y) 
4.5~10~~ exp( -38016 ) 

Depending on reaction, k f , i  has dimensions of c 
or  cm3/mole-sec. 

Efficiency 
f a c t  or , 

-I 

1 

1/3 
1/3 
5 
1 

( b )  Vibrational Nonequilibriwn Rate Constants 

pv0 = 1.6188~10-~ exp( 101 .44/T1'3)dynes -see/" 
2 

= 1 . 1 1 5 3 l ~ l O - ~  f i  exp( 154 .0/T1'3)dynes-sec/cm2 p7Y" 

where p i s  the  l o c a l  value (or s t a t i c )  pressure 
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Figure 1.- Product of density and the charac te r i s t ic  relaxation times t h a t  occur i n  the  r a t e  equation 
[u u f o r  nitrogen. 
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Figure 2.- Product of density and the characteristic relaxation times that occur in the rate equation 
for oxygen. 
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Figure 3.- Comparison of the temperature prof i le  from a nozzle flow calculation by Emanuel and Vincenti 
( r e f .  9) with the p ro f i l e  obtained from the  present a i r  model. 
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